$17,500 Off a New Electric Car in VT, MD, TX, and elsewhere

Green Mountain Power, a progressive climate-fighting electric utility in Vermont, has just announced a new program for its customers in partnership with Nissan, giving buyers of the 2017 Nissan Leaf a $10,000 discount. This is in addition to a $7,500 tax credit for which most new Leaf buyers will qualify. The base MSRP for a Nissan Leaf is $30,680, meaning buyers who take advantage of the discount and who qualify for the tax credit can get a new Leaf for $13,180.

This same deal is available in a number of other areas, including Maryland and Texas: see this article for more information.

In addition to savings on purchase of the car itself, electric car buyers enjoy much lower fuel costs and much lower maintenance costs, with no oil changes and few moving parts to wear out.

You may have heard that electric cars aren’t really any better for the environment than gasoline cars. That story has gone around the Internet a lot, but it’s not true. You can read some of the details here.

Transportation is the single biggest factor in most individuals’ and families’ carbon footprints, and cars are the biggest part of the transportation carbon problem. Buying an electric car is one of the very best ways you can reduce your carbon footprint.

The 2017 Leaf has an estimated electric range of 107 miles on a full charge. This goes down a little in winter in colder climates, but it’s also a conservative number; careful driving can get better range. Many families have an electric car for local transportation and a gas car or hybrid for longer drives. Other electric cars currently available have a greater range: for instance, the Chevy Bolt has a range of 238 miles, and the Chevy Volt (yes, it’s ridiculous that they have two cars with such similar names), while it has only a 53 mile electric range, has a backup gasoline engine that kicks in automatically when the battery runs out of power.

In this deal sounds too good to be true, I can explain Nissan’s motivation here: in a few months they’ll start selling the 2018 Leaf, which has much greater range and some other advantages. Discounting the 2017 models so steeply offers them a change to generate interest in the brand and get the old stock off the lots before it’s eclipsed by the new model.

Questions or concerns about electric cars? Check out the information at Drive Electric Vermont, or comment here.

The Engine on the Electric Bus Goes (silence) …

By now you’ve probably heard of electric cars, but have you heard about electric buses? They have all of the advantages of good electric cars in a larger size. For example, they’re very quiet, don’t put out any exhaust, have a low carbon footprint, and require much less maintenance than an ICE (internal combustion engine) vehicle.

Drive Electric Vermont today shared a photo of an electric bus visiting the University of Vermont. Take a look:

Proterra electric bus

While electric buses currently cost more than ICE buses, they pay for their extra costs with fuel, maintenance, and repair savings, and once they’ve done that they start saving money for taxpayers. Proterra buses are one option; another is Nova Bus. With EV technology improving practically before our eyes and an ever-wider network of charging stations, maybe it’s time to start thinking about about bringing some of these amazing vehicles into our municipal and school bus fleets.

Electric Cars vs Fuel Cell Cars: One Clear Loser

It may not seem like cars are going through their most radical change since Henry Ford’s assembly line, but they are. Electric vehicles (EVs) are a small but growing fraction of vehicle sales in the U.S., and this is with limited public knowledge, short range among affordable EVs, relatively few charging stations, and high price tags.

Early electric car

You may be amazed to learn, as I was, that electric cars were widely popular from the dawn of the automobile until the electric starter replaced the hand crank and made gas-powered cars less of a pain in the neck.

But the 2016 model year brings at least two strides forward: the Chevy Volt has improved gas mileage, lowered price, and increased electric range from 38 to 53 miles, while the 2016 Leaf’s range expands from 84 to 107 miles. With used EVs becoming available plus the likelihood of more battery innovations and dropping battery costs, EV’s are crossing the line to becoming a cheaper than gas cars, on top of their many other advantages, like powerful acceleration, quietness, and greatly reduced maintenance costs.

By the way, if you’re concerned that EVs might not be a good choice for the climate in some parts of the country, you’ve probably heard the comparison of oil to coal-generated electricity. There’s a fundamental error in this, because it’s comparing “tailpipe” emissions for the gas car to “lifecycle” emissions for the EV. Lifecycle emissions are the total climate impact of obtaining, processing, and using something. When we calculate lifecycle emissions for gas cars and compare apples to apples, gas cars are a clear and universal loser: see “Wait, Gas-Powered Cars Do WHAT?!?“.

But EVs aren’t the only climate-friendly car revolution in progress: fuel cell cars (FCVs), which run electric motors by producing electricity from combining hydrogen from the fuel tank with oxygen in the air to produce water, are also becoming progressively more efficient and less expensive. Having electric engines, they have most of the advantages of EVs, too, and while in recent years they’ve been widely written off as being impractical, their technology has advanced to the point where they’re now a reality, including Toyota’s Mirai, currently being sold in Japan, as well as a number of other models, some of which are affordable and being sold in the U.S..

Toyota Mirai

Toyota Mirai – photo by Turbo-myu-z

“Affordable” is a relative term, of course. EVs and FCVs are mainly available new, and the only way they currently compete with ICE (internal combustion engine) cars in the U.S. is because of government subsidies.

However, unlike ICE cars, EVs and FCVs are experiencing an ongoing burst of innovation in batteries, fuel cells, and electric engines that shows no sign of slowing. With every improvement, these cars become a better value proposition compared to ICE cars, and when we calculate in the cost to the climate, they are arguably a much better value already.

All of this is without any increase of gas prices–and if there is one thing we know about gas prices, it’s that they never stay steady for long–and without a carbon tax. If carbon taxes become widespread, as for all our sakes I hope they will in the near future, suddenly EVs and FCVs will become much more economically attractive, which will fuel larger-scale manufacture and more innovation, which will make them cheaper in a virtuous cycle that could continue for many years.

So which will win, the EV or the FCV? To answer that question, we should start by realizing that these are just two varieties of the same thing: a car with an electric engine and a way to store electrical energy. EVs store that energy in batteries; fuel cells require electricity to generate hydrogen from water, and the hydrogen is then pumped into the car to return most of that electricity when it’s converted back.

Hydrogen filling station

Hydrogen filling station in Iceland – photo by Jóhann Heiðar Árnason

In the near term, it seems unlikely either will gain a decisive upper hand unless it experiences a sudden and outsize technological leap. Some car companies are putting their weight and huge amounts of funding behind EVs, while others are doing the same thing with fuel cells. Both technologies have widespread uses apart from automobiles, including local grid electricity storage, mass transit, and industry, and both are likely to benefit from outside advances.

In the long term, if one technology pulls well ahead of the other in terms of how well it stores energy compared to size, weight, and cost, that technology may eventually take over. If I had to bet on one, I’d bet on EVs, which have wider early adoption, are easier to understand, and can easily be charged at home. One of the great advantages of owning an EV is that you never have to go to a gas station, and even when you do fuel up away from home, the energy is often free, at least these days. That said, fuel cells take only minutes to refuel, compared to much longer battery charging times, and a big enough breakthrough in fuel cell efficiency could wipe EVs off the map.

Still, there is one clear loser in this game: ICE cars, our familiar gas guzzlers. The only real advantage of ICE cars is that they’re established. We’re familiar with them, there’s a huge supply and a wide variety of ICE cars, and gas stations are everywhere. True, they also fuel up faster than EVs, but they don’t have that advantage over FCVs, and EVs can be charged at home, overnight or during the work day. As electric ranges increase, the need to fuel up away from home will only apply for long trips, and when fast charging stations are more widely available, it won’t be difficult to charge your car while you stop for a break or meal every few hours.

So ICE cars are louder, perform less well, smell worse, are terrible for the environment, will become less convenient, and soon will be more expensive than both EVs and FCVs. Will the force of habit be enough to make us stick with them as this equation becomes more and more unbalanced? History suggests that it won’t: no matter how used to the horse and buggy we were, no matter how unusual microwaves seemed at first, or how much of a change it was to start streaming video rather than simply watching TV, we Americans–and most other people in the world–have proved we are always ready to change our habits if something strikingly better comes along. Now not one, but two things have.

Wait, Gas-Powered Cars Do WHAT?!?

Gas-powered cars, it turns out, actually use more electricity than electric vehicles (EVs).

I’m not talking about the “equivalent” of electricity or the amount of energy, I’m talking about somebody-has-to-generate-it-and-send-it-through-the-power-lines electricity. Gas-powered cars. Use more than. Electric cars.

oil refinery

If that sounds ridiculous, well, it is–but it’s also true. Forget about the energy that comes from burning the gas: refining gasoline takes a huge amount of electricity. Ironic, isn’t it, that producing a fuel to supply energy to vehicles itself consumes so much energy?

But let’s get to the numbers. Let’s say you have an absolutely average gas-powered car that gets about 23 miles per gallon. To refine that gallon of gas, it takes the refinery about 6 kilowatt hours (kWh) of electricity to move around water, power equipment, etc.*

Let’s say, on the other hand, that you have an average electric car. How far would you be able to go on that 6 kWh of electricity if it didn’t go into making you a gallon of gas? About 23 miles.

Now consider that on top of refining the gasoline, you also have drilling, transportation, storage, pumping, etc., all of which takes even more electricity.

And none of this takes into account the much greater effects of all the fossil fuel energy in that gallon of gas, which includes not only the gallon of gas itself but all the pumping, transportation, and other effort required to get it from a pool deep under the ground or a field of tar sands into your gas tank.

You can still beat the electricity figures above by driving an extremely efficient vehicle, especially a good hybrid, but this would appear to hugely tilt the scales in the favor of EVs when we talk about greenhouse gas emissions from even those hybrids.

This was just one of those things that blew my mind a little, so I thought I’d share it with you. Now back to your regularly-scheduled day.

*That figure is from the US Dept. of Energy: see correspondence about it here.